IV. Notes on Fig Insects, including descriptions of three new species and a new Blastophagine gemus. By James Waterston, B.D., B.Sc.

[Read February 44h, 1920.]

The Imperial Bureau of Entomology has recently received a small consigmment of Fig Insects from Uganda, collected by Dr. G. D. H. Carpenter. In working out these and other insects of the same family, already in the collections of the Burean, I have made some notes which seem worth recording with the descriptions of the new species. Not the least interesting occurrence is that of Blastophaya psenes L. at Pretoria in 1919. One would like to know whether the species has been deliberately introduced or whether it has arrived more fortuitously.

Blastophaginae.

Blastophaga psenes L.

Cynips psenes Limné, Syst. Nat., p. 554 (1758).
Transvaal, Pretoria, 28.xi.1919. 3 우.
Compared with specimens from Montpellier (S. France) the above examples have the apical joint of the club a little shorter, and there are some minute differences in chaetotaxy which appear to be well within the range of variation shown in this species.

Blastophaga allotriozoonoides (irnd.

Blastophaya allotriozoonoides Grandi, Boll. Lab. Zool. Portici, $x, 10.128$ (1916).
Kabete, 27.vi.18. \& "Taken on coffee."
In this example the first joint of the mid tarsus is $\frac{1}{4}$ longer than the 2nd. In the head the length (depth) and width are sub-equal. The ?nd joint of the antema is distinctly longer than wide. I have therefore assigned it to B. alloriozoonoides Gind., though the shape of the scape does not quite tally with Grandi's figure (Bull. Soc. Ent. Ital., xviii, fig. 1, p. 6, 1917).

TRANS. ENT: SOC. LOND. 19:30.-PARTS I, II. (JULY)

Gemus Pegoscapus Cam. (1906).

Pegoschpus Camerom, Ann. Eistacion Centr. Agronom de C'uba, p. 275 (1906).
Genotype P. longiceps Cam., loc. cit., p. 276.
In " (ienera Insectorum," 97, p. 386, 1909, s'chmiedeknecht places this genus in the Spalangini (Pteromalinae), but an examination of Cameron's material proves Peyoscopus to be a true Blastophagine. I have not had access to the original description, and camot tell whether Schmiedeknecht has merely followed Cameron's opinion or puts forward his own views. The British Museum possesses two q examples of P. lomgiceps labelled-
(a)"Cuba, ex Cameron Coll.," acquired in 1906.
(b) "Cuba, Havana, Baker, No. 318", ex Cameron Coll. Type," acquired in 191.1.

These specimens are specifically identical. The head is wanting in the type, but has fortunately been preserved in the co-type. The neuration is peculiar, being coloured up to the origin of the stigmal vein, beyond which is only a short hyaline stump along the costa, i.e the postmarginal is practically, and without careful examination appears to be entirely, wanting. In this respect Peyoscepus Cam., approaches Eiseniella Aslim. (Proc. Wash. Ent. Soc., vol. 8, p. 31, 1906), which is a 11.11. For Eisenia Ashm. (nec Malm. 1877) (Mem. Cam. Mus., 1, No. 4, p. 233, 190.4). Should further investigation prove the identity of Eisemiclna Ashm., and Peyoscopus * ('am., the forme name will probably have priority, as it appeared on 13th July, white Cameron's paper presumably was not published till the end of the year.

The species next to be described is so remarkable that a new gemus seems necessary for its reception. For this the name Liporrhopulum, gen. nov., is here proposed. Like Blestopheaga Grav., Liporrhopelem has small cireular abdominal spiracles, and the striae on the under surface of the mandibles and their appendages simple. There is a further agreement between the genera in the basal joints ($1-5$) of the antema, but from the 6th joint to the end these organs in Liporrhopalum show affinity only with the genus Agrean Dalm. The neuration is mique, and in this respect Liporrhopalum has no close relation except with Eupristina

* ef. also Valentinella Grandi, Boll. Lab. Portici, xiii, p. 25 (1919).
trans. ent. soc, lond. 1920.-palts i, 11. (JUly) k

Saund. In the latter, however, the only well-defined nervure is the subnarginal, which ends in an indefinite club with 3 clear pustules, remote from the costa, towards which a linear thickening of the wing membrane stretches. This thickening is doubtless the obsolescent base of the marginal vein. In Liporrhopalum there is a single pustule towards the end of the submarginal, but the nemration is normal except that the radius is entirely wanting. The extreme tip of the neuration is abruptly thimed.

If the minute th antemal joint of this insect were overlooked, the antemal formula might be confused with that of the monotypic Plalyscapus Motsch. (Bull. Soc. Nat. Moscou, vol. 36, p. 47, 1863), which was described from Ceylon and may be a l'ig Insect. In his account of P. fromtalis (ib., p. 48, t. 2, f. 6), however, Motschuisky notes the presence of a short radius in the wings, and in the figure the funicle appears to be distally tumescent.

Liporriopalum gen. nov. (Fig. 1.)

Head short, eyes large, sparsely subpilose. Antenna; scape broad and stout. Funicle slender, the joints from the 6th onwards several times as long as broad. Club long, cylindrical, not wider than the rest of the funicle. Sensoria short produced into long tubular processes. Thorax normal. Wings densely clothed with cilia. Neuration contimed on to the costa, after a single pustule at the origin of the marginal. No stigmal vein. Spiracles small. Abdominal tergites not incised posteriorly.

Genotype the following speries.

Liporrhopalum rutherfordi, sp. n.

A black or blackish-brown species, only the tarsi and mid tibiae palcr. Wings hyaline.
Head between ? and ? broader than deep. Eye extending to half the depth. Antenna (fig. 1 (t) about 1 mm. long. Seape and bulla fused, hroader than long ($+: 3$). Apex of the former rounded, angulate above the pediecl, 4 thı joint mimute and transverse (11 : 9), nearly completely hidden by the base of the horn-like process on the 3 rd joint (fig. 1b). Sensoria on 5th joint of normal long Blastophagine type with short distal angular projections. Thereaiter they are short with tubular processes. Relative lengths of the succeeding joints, $14: 10: 13: 13: 17$, with an average breadth of 3 . Both antennae are broken after the 5 th. The last joint is
probably a fusion of two. If not, one joint may be missing. The apical sense organ shows a number of scale-like bristles disposed as in fig. lc. Mandibular appendage short (measured along the inner edge sub-equal to the mandible along the outer edge), with 4 laminar ridges. On the under surface of the mandible between the ridge from the imer ventral tooth and the posterior edge there is only one median ridge. Pronotum undivided. Parapsides on

Fic. 1.-Liporrhopalum rutherfordi Wtrai. i. (a) Antema, (b) third joint of the same, (c) terminal sense: organ, (d) fore-wing, (e) right side of proporleon flattened (dorsal and pleural aspects) showing partially covered spiracle, (e^{\prime}) propodeal spiracle uncoverel, (f) abtominal spiracle -lith tergite, on twice the scale of e.
outer half $7-9$ bristles. Scutellum broadly overhanging. Metanotum 3-4 bristles on each side. Propodeon (fig. le).

Wings. Fore-wings (fig. $1 d$). Length 1.2 mm ., breadth .6 mm . The neuration extends to .75 mm . from the radix. Rather over the distal $\frac{1}{3}$ (marginal + postmarginal) lies on the costa. Whole surface of wing densely pilose including the subeostal cell. Hindwing length $\cdot 75 \mathrm{~mm}$., breadth $\cdot 14 \mathrm{~mm}$.

Legs. Apex of fore tibiae extemally tridentate above, the eorresponding ventral prolongation tridentate-the upper tooth
marginate. Apical spur simple, straight, more than half as long as the tibia. On the 1st tarsal joint posteriorly are 4-5 short stout bristles in a subventral row with as many more above. At the apex of the hind tibia ventrally on onter aspect are three comnected eurved teeth, the most ventral largest and covering the short peg-like spur. 1st hind tarsal joint ventrally gently excised and thinned on basal $\frac{2}{3}$. In the fore and hind tarsi the 2nd and 3 rd joints are equal; in the mid tarsus the 3rd exceeds the 2nd by $\frac{1}{5}$. In the fore tarsus the 1 st joint is $\frac{1}{2}$ longer than the 2nd; in the mid tarsus the first joint slightly exceeds the second and equals the third; in the hind tarsus the first joint is 2_{4}^{3} the second.

Abdomen. Tergites 1-4 and again 5 and 6 are sub-equal, the latter distinctly shorter than the former. The receptaculum is globular and strongly chitinised. Spiracle small circular (fig. $1 f$), 7th tergite chitinised not membranous, stylet short broader than long, apieally rounded with two long apical bristles and one at the side. Ovipositor about $\frac{1}{3}$ the abdomen, sheath with 8 bristles on apical half. Apex of saw with one rather strong tooth. 5th sternite not eultriform but rounded, truncated distally, with narrow ecntral process.

Length, over 1.5 mm .
Alar expanse, abont 2.75 mm .
Type q in Brit. Mus.
Ceylon, Peradeniya. "On laboratory table," 1.viii. 1913. (A. Rutherford.)

Named in honour of its collector the late Government Entomologist at Peradeniya.

Although the following species is well marked, I feel a little doubt as to its generic position, owing to the incomplete state of the material available. All the specimens are dealated, and in none is an antema complete beyond the 6 th joint. While this does not prevent the drawing up of a reliable diagnosis a study of the wings and last segments of the antenna might have given additional clues to the generic placing of this form. From typical Agaon the new species differs only in having but one major tooth on the mandible. The head is also somewhat short. On the other hand, the antenna (fig, 2b) so far as it goes is exactly that of Agoon and of no other Blastophagine genus. Another slight but important character is the presence of a row of bristles (4) along the stipes and the absence of a palp-like splint. A. scobiniferum, sp. 11., may
be known at once by the short and broad mandibular appendage.

Agaon scobiniferum, sp . n .

Head (fig. 2a) mnch longer than wide, across the eyes (5:4), at the month edge ($2: 1$), about equal to the thorax up to the hind edge of the seutellum or to $\frac{2}{3}$ of the entire thorax and propodeon. Eyes small, prominent, occupying $\frac{1}{3}$ of the depth and separated by ${ }_{4}^{3}$ the greatest width of the head. Toruli set at $\frac{2}{3}$ from the base

Fis. 2.-Agron scobiniferum Wtrst. 8. (a) Head from above, (b) first 6 joints of antenna, (c) mandible and appendage, (d) propodeal spiracle, (e) abdominal spiracle-Gith tergite, (f) receptaculum seminis.
line of the eyes to the apex of the elypeus. Facial impression, oblong (the sides subparallel, diverging a little towards the ocelli), ahout ! the breadth of the head. Clypeal edge with large eentral tooth-like lobe flanked on each side by 2 bristles with 2 pairs of approximated lristles merlianly set before $\frac{1}{2}$ towards the toruli, Mandibles (fig. 2c) with one apical tooth and (ventrally) 10-12 ridges. The serrated appendage a little more than twice as long as broad with about 20 rows of saws containing $20-30$ tecth. Stipes (5:1) with 4, galea 3, labium 2, bristles.

Thoras. Pronotum short, transverse, broadly and deeply emargimate anteriorly, in two narrowly separated tergites which are broadly free and heavily chitinised posteriorly. Spiracle lateral,
projecting, emargination shallow. Mesonotum; scutum, with two minute widely separated bristles in front of the suture, $\frac{1}{1}$ longer than the sentellum, which is bare anteriorly and laterally, with 8-10 minute bristles in the posterior gradrant. Metanotnm with three bristles at each side. Mesosternum proper sharply separated from the mesopleurac. The episternal portion of the latter inthmeseent, defined by an oval in-crassation which coalesces ventrally with that limiting the sternmm. Epimeron large with $4-5$ minnte bristles at its anteroventral angle.

Legs. Fore coxae practically hare except on the thin chitinons ridge (along the inner surface of apposition). which is elothed throughont its length with dense soft bristles. Femur only $\frac{7}{6}$ longer than the coxa. Tibia, to the end of the dorsal apical tooth, $\frac{1}{2}$ the femmr. Posteriorly the 1st tarsal joint bears 7 stout bristles, the 2 nd and 3 rd 3 each, the 4 th 2 , the 5 th hare. All five have 1 fine apical dorsal bristle and a number of thin spinose processes on the plantar aspect. In the hind-leg the tibia is remarkable for its length and shape, being shorter than the femm and spatulate in profile. The dorsal and ventral edges alike convex, no definite apical ventral angle. There is only one stout tooth-like spine at this angle. In the fore tarsus the proportions of the 1st three joints are 65:52:52 (in A. fascialum Waterst., 65: 17:34); in the mid tarsus the 3rd joint is relatively longer, and in the hind tarsus shorter tlran in A. fuscintum.

Abdomen. All tergites 1-6 are slit shortly at the middle of the posterior margin, the 1st. which is as strongly ehitinised as the others, at the sides as well. The ovipositor is a little shorter than the abdomen. Stylet shost and broad with 4 long hristles. Spiracle moderate, broadly oval (fig. 2e).

Length, about 2 mm. ; ovipositor, abont $\cdot 8 \mathrm{~mm}$.

Type q in B. M.

One of a series from Uganda, L. Vietoria, on Marida Is. (a very small island sonth of Wema Is. in the chain between Entebbe and Jinja), in fruit of Ficus Inkamda Welw., 1919 (I)r. G. D. II. (arpener).

Sycopilafinae.

Gemus Seres Wtrst. (1919).
Seres Waterston, Ent. Mo. Mag. Brd Ser. No. 60, p. 275. Dec. 1919.
Genotype S. armipes Wtrst., loc. cil., p. 276.

Seres levis, sp. n.

This is a smaller, duller and less metallic form than the genotype, with slightly paler legs, the mid tibiae, e.g., being only faintly embrowned dorsally. Both mandibles (fig. $3 e$) are here tridentate. The funicular joints are relatively broader, the second hardly exceeding the others. The general shape of the head is the same in levis and armipes, but the proportions are strikingly different (see fig. 3). S. levis, sp. n., is less specialised than the genotype, as may be seen in its larger and more normal fore tibia and the longer eye, whose base line extends

Figi. 3.-Seres armipes Wtrst. i $(a-c)$, Seres levis Wtrst. is ($d-f)$. (a, d) Head from above, (b, e) right mandible, (c, f) tibia of forelegouter aspect.
beloun the toruli. The latter ocenpy the same position relatively in both species.

The abdomen is also less modified than in the genotype.
Head, length 75 mm ., longer than broad (fig. 3 ll), across the eyes $3: 2$ and at the lase line of lobes flanking the elypens 2:1. Eyes fully half as long as the head. Toruli well above the base line of the eyes, otherwise in the same relative position as in the genotype. Lateral lobes inconspicuous, their sides converging, elypeal projection short, very broad and deeply and evenly emarginate, with a row of bristles (7-9) above and many others scattered irregularly up to the level of the toruli. Antenna 75 mm . Seape
(6:1). Pedicel (2:1). Funicle not conspicuonsly dilated. First three joints of equal length (9), the 4 th a trifle longer (10), club in ratio $11: 9: 10$. The joints of funicle and club are of practically equal breadth (12), the sceond funicular, a little broader (13). Maxillary palpus $14: 7: 7$, width of 1 st joint at apex 6 , terminal bristle twice the supporting joint. Labial palpus 10:9. Apical bristle equal to that of the maxillary palpus.

Thorax and Propodeon 1 mm . in length. Pronotum quadrate with anteriorly convergent sides, over half as long as the combined scutum and scutellum. Parapsidal and axillary sutures interstitial. Scutellum with 4 bristles one at each side posteriorly on the axillary suture and another at the hind edge. Metapleurae striate reticulate with about a dozen minute bristles between the edge and the spiracle.

Wings. Fore-wings, length 1.4 mm ., breadth $\cdot 6 \mathrm{~mm}$., 5 bristles on submarginal. On marginal + postmarginal there are at the edge and on the smface about a dozen bristles besides the solitary one at the base of the radius. Diseal ciliation a little denser and darker than in the genotype. Hind-wings (19:5). Length $1 \cdot 1 \mathrm{~mm}$.

Fore-legs. Femur (fig. $3 f$) more elongate ($7: 2$) than in S. armipes, ventral edge straight, dorsally conrex. Tibia with only 3 peg-like spines, 1 at apex ventrally and 2 dorsally. Tarsus, first three joints as in armipes. Mid- and Hind-legs. In the mid tarsus the first and seeond joints are in ratio 5: 4 (armipes 5:3), and in the lind tarsus these two joints are sul-equal (armipes 5:4). Second hind-tibial spur $\tilde{5}_{5}$ of the first.

Abdomen + ovipositor over 1.4 mm . The ovipositor about $\cdot 25 \mathrm{~mm}$. Tergites 1 and 4 are longest and sub-equal and about $\frac{1}{4}$ longer than 2, which is shortest; 3, 5 and 6 are equal, slightly exceeding 2. Tergites 1-4 show three, and tergite 5 one, slits posteriorly. The deepest slit on tergite 1 extending to $\frac{1}{4}$. Spiracle minnte, circular, its diameter the length of the stylet (much larger in S. urmipes, the diameter $1 \frac{3}{4}$ as long as the stylet). Tergite 6 with median row of 4 bristles $(2,2)$ and a pateh of bristles $(10-12)$ on the inner side of each spiraele, 1-2 of the bristles being longer than the others.

Length, about 3 mm .; alar expanse, $4 \cdot 6 \mathrm{~mm}$.
Type q in B. M.
One of a series from Ufanda, L. Victoria, on Marida Is. (a very small island south of Wema Is. in the chain between Entebbe and Jinja), in fruit of Ficus lukanda Welw., 1919. (Dr. G. D. II. ('arponter.)

